AccueilBibliothèqueCollection de textes
Dernière mise à jour :
samedi 25 mars 2017
Mardi 21 mai - La Revue Z à Terra Nova
lundi 20 mai
Mardi 21 mai 2013 à 19h, rencontre à la Librairie Terra Nova de Toulouse avec l’équipe de la revue Z à l’occasion de la parution du dernier numéro Thessalonique & Grèce, aux éditions Agone. Après une enquête collective au nord de la Grèce, la revue Z viendra présenter son dernier numéro : Thessalonique dans la dépression européenne. Bricolages quotidiens et résistances insolvables.
Groupe de Liaison pour l’Action des Travailleurs
lundi 6 février
Le sommaire des articles de la revue Lutte de classe, publiée par le GLAT, a été largement augmenté, notamment sur la période 1971-1975. Pour tous les numéros listé, une version PDF est maintenant accessible en ligne. Bonnes lectures !
Mise à jour du catalogue du fonds documentaire
jeudi 1er septembre
Une nouvelle version mise à jour du Catalogue du Fonds Documentaire Smolny, très largement étendue (une vingtaine d’entrées supplémentaires) est en ligne ce jeudi 1er septembre 2011. Merci aux contributeurs. D’autres titres à suivre...
Ouverture des archives numériques du CERMTRI
lundi 15 août
Le CERMTRI a décidé de créer une bibliothèque numérique avec l’objectif de numériser le maximum de ses archives et de ses collections. Pour démarrer : La revue « Bulletin Communiste » (1920-1933) ; le journal « La Vérité » (1957-1958) ; la revue des « Cahiers du mouvement ouvrier » (2002-2011). Soit déjà 428 documents ce qui représente 6395 pages. Bravo pour cette excellente initiative !
Sur le Web
Nous nous auto-organisons et nous montons un infokiosque, une sorte de librairie alternative, indépendante. Nous discutons des publications, brochures, zines et autres textes épars qui nous semblent intéressants ou carrément nécessaires de diffuser autour de nous. Nous les rassemblons dans cet infokiosque, constituons ainsi nos ressources d’informations, et les ouvrons au maximum de gens. Nous ne sommes pas les troupes d’un parti politique, ni les citoyen-ne-s réformateurices de nos pseudo-démocraties, nous sommes des individus solidaires, qui construisons des réseaux autonomes, qui mettons nos forces et nos finesses en commun pour changer la vie et le monde.
Premiers pas sur une corde raide Montreuil (93) : concert de soutien au Rémouleur, samedi 11 octobre 2014 qcq Tout mais pas l'indifférence Crise, totalitarisme, luttes sociales et de classe en Grèce Bruxelles : programme de septembre 2014 au local Acrata
Catalogue de textes d’origine libertaire ou anarchiste, sans habillage particulier (pas de commentaire, d’édition critique, de note). Les textes bruts donc avec une liste d’auteurs qui commence à être significative. Un bon point d’entrée donc pour ceux qui savent à l’avance ce qu’ils cherchent. Attention : ce site s’est fait subtilisé sa précédente adresse par un site pornographique. Notre propre lien a donc été incorrect quelque temps. Nous en sommes désolé.
Sur l’histoire du syndicalisme révolutionnaire et de l’anarcho-syndicalisme, avec des études, documents et synthèses intéressantes sur Pelloutier, Monatte, La Vie Ouvrière (1909-1914) et sur les mouvements syndicalistes en France, Europe, USA...
Cahiers d’histoire du mouvement ouvrier international et de la Guerre d’Espagne. Nombreux articles en espagnol. Textes de Bordiga, entre autres.
Classiques des sciences sociales
Une bibliothèque numérique entièrement réalisée par des bénévoles, fondée et dirigée par Jean-Marie Tremblay, sociologue. Comprend de très nombreuses oeuvres du domaine public. La section des "auteurs classiques", en particulier, est une véritable mine, où l’on trouve Bebel, Bordiga, Boukharine, Engels, Fourier, Gramsci, Kautsky, Labriola, Lafargue, Lukacs, Luxemburg, Marx, Trotsky et bien d’autres.
DARWIN Charles & WALLACE Alfred (1858) : On the Tendency of Species to form Varieties ; and on the Perpetuation of Varieties and Species by Natural Means of Selection
The famous 1858 Darwin-Wallace paper submitted to the Linnean Society, read July 1st, 1858.
21 April 2009 by eric

My Dear Sir,— The accompanying papers, which we have the honour of communicating to the Linnean Society, and which all relate to the same subject, viz. the Laws which affect the Production of Varieties, Races, and Species, contain the results of the investigations of two indefatigable naturalists, Mr. Charles Darwin and Mr. Alfred Wallace.

These gentlemen having, independently and unknown to one another, conceived the very same very ingenious theory to account for the appearance and perpetuation of varieties and of specific forms on our planet, may both fairly claim the merit of being original thinkers in this important line of inquiry; but neither of them having published his views, though Mr. Darwin has for many years past been repeatedly urged by us to do so, and both authors having now unreservedly placed their papers in our hands, we think it would best promote the interests of science that a selection from them should be laid before the Linnean Society.

Taken in the order of their dates, they consist of:-

I. Extracts from a MS. work on Species*, by Mr. Darwin, which was sketched in 1839, and copied in 1844, when the copy was read by Dr. Hooker, and its contents afterwards communicated to Sir Charles Lyell. The first Part is devoted to "The Variation of Organic Beings under Domestication and in their Natural State;" and the second chapter of that Part, from which we propose to read to the Society the extracts referred to, is headed, "On the Variation of Organic Beings in a state of Nature; on the Natural Means of Selection; on the Comparison of Domestic Races and true Species."

* This MS. work was never intended for publication, and therefore was not written with care.-C.D. 1858.

II. An abstract of a private letter addressed to Professor Asa Gray, of Boston, U.S., in October 1857, by Mr. Darwin, in which he repeats his views, and which shows that these remained unaltered from 1839 to 1857.

III. An Essay by Mr. Wallace, entitled "On the Tendency of Varieties to depart indefinitely from the Original Type." This was written at Ternate in February 1858, for the perusal of his friend and correspondent Mr. Darwin, and sent to him with the expressed wish that it should be forwarded to Sir Charles Lyell, if Mr. Darwin thought it sufficiently novel and interesting. So highly did Mr. Darwin appreciate the value of the views therein set forth, that he proposed in a letter to Sir Charles Lyell, to obtain Mr. Wallace’s consent to allow the Essay to be published as soon as possible. Of this step we highly approved, provided Mr. Darwin did not withhold from the public, as he was strongly inclined to do (in favour of Mr. Wallace), the memoir which he had himself written on the same subject, and which as before stated, one of us had perused in 1844, and the contents of which we had both of us been privy to for many years. On representing this to Mr. Darwin, he gave us permission to make what use thought proper of his memoir, &c.: and in adopting our present course, of presenting to the Linnean Society, we have explained to him that we are not solely considering the relative claims to priority of himself and his friend, but the interests of science generally; for we feel it to be desirable that views founded on a wide deduction from the facts, and matured by years of reflection, should constitute at once a goal from which others may start, and that, while the scientific world is waiting for the appearance of Mr. Darwin’s complete work, some of the leading results of his labours, as well as those of his able correspondent, should together be laid before the public.

We have the honour to be yours very obediently,
Charles Lyell.
Jos. D. Hooker.
J.J. Bennett, Esq.,
Secretary of the Linnean Society

I. Extract from an unpublished Work on Species, by C. Darwin, Esq., consisting of a portion of a Chapter entitled, "On the Variation of Organic Beings in a state of Nature; on the Natural Means of Selection; on the Comparison of Domestic Races and true Species."

De Candolle, in an eloquent passage has declared that all nature is at war, one organism with another, or with external nature. Seeing the contented face of nature, this may at first be well doubted; but reflection will inevitably prove it to be true. The war, however, is not constant, but recurrent in a slight degree at short periods, and more severely at occasional more distant periods; and hence its effects are easily overlooked. It is the doctrine of Malthus applied in most cases with tenfold force. As in every climate there are seasons, for each of its inhabitants, of greater and less abundance, so all annually breed; and the moral restraint which in some small degree checks the increase of mankind is entirely lost. Even slow-breeding mankind has doubled in twenty-five years; and if he could increase his food with greater ease, he would double in less time. But for animals without artificial means, the amount of food for each species must, on the average, be constant, whereas the increase of all organisms tends to be geometrical, and in a vast majority of cases at an enormous ratio. Suppose in a certain spot there are eight pairs of birds, and that only four pairs of them annually (including double hatches) rear only four young, and that these go on rearing their young at the same rate, then at the end of seven years (a short life, excluding violent deaths, for any bird) there will be 2048 birds, instead of the original sixteen. As this increase is quite impossible, we must conclude either that birds do not nearly half their young, or that the average life of a bird is, from accident, not nearly seven years. Both checks probably concur. The same kind of calculation applied to all plants and animals affords results more or less striking, but in very few instances more striking than in man.

Many practical illustrations of this rapid tendency to increase are on record, among which, during peculiar seasons, are the extraordinary numbers of certain animals; for instance, during the years 1826 to 1828, in La Plata, when from drought some millions of cattle perished, the whole country actually swarmed with mice. Now I think it cannot be doubted that during the breeding-season all the mice (with the exception of a few males or females in excess) ordinarily pair, and therefore that this astounding increase during three years must be attributed to a greater number than usual surviving the first year, and then breeding, and so on till the third year, when their numbers were brought down to their usual limits on the return of wet weather. Where man has introduced plants and animals into a new and favourable country, there are many accounts in how surprisingly few years the whole country has become stocked with them. This increase would necessarily stop as soon as the country was fully stocked; and yet we have every reason to believe, from what is known of wild animals, that all would pair in the spring. In the majority of cases it is most difficult to imagine where the checks fall—though generally, no doubt, on the seeds, eggs, and young; but when we remember how impossible, even in mankind (so much better known than any other animal), it is to infer from repeated casual observations what the average duration of life is, or to discover the different percentages of deaths to births in different countries, we ought to feel no surprise at our being unable to discover where the check falls in any animal or plant. It should always be remembered, that in most cases the checks are recurrent yearly in a small, regular degree, and in an extreme degree during unusually cold, hot, dry, or wet years, according to the constitution of the being in question. Lighten any check in the least degree, and the geometrical powers of increase in every organism will almost instantly increase the average number of the favoured species. Nature may be compared to a surface on which rest ten thousand sharp wedges touching each other and driven inwards by incessant blows. Fully to realize those views much reflection is requisite. Malthus on man should be studied; and all such cases as those of the mice in La Plata, of the cattle and horses when first turned out in South America, of the birds by our calculation, &c., should be well considered. Reflect on the enormous multiplying power inherent and annually in action in all animals; reflect on the countless seeds scattered by a hundred ingenious contrivances, year after year, over the whole face of the land; and yet we have every reason to suppose that the average percentage of each of the inhabitants of a country usually remains constant. Finally, let it be borne in mind that this average number of individuals (the external conditions remaining the same) in each country is kept up by recurrent struggles against other species or against external nature (as on the borders of the Arctic regions, where the cold checks life), and that ordinarily each individual of every species holds its place, either by its own struggle and capacity of acquiring nourishment in some period of its life, from the egg upwards; or by the struggle of its parents (in short-lived organisms, when the main check occurs at longer intervals) with other individuals of the same or different species.

But let the external conditions of a country alter. If in a small degree, the relative proportions of the inhabitants will in most cases simply be slightly changed; but let the number of inhabitants be small, as on an island, and free access to it from other countries be circumscribed, and let the change of conditions continue progressing (forming new stations), in such a case the original inhabitants must cease to be as perfectly adapted to the changed conditions as they were originally. It has been shown in a former part of this work, that such changes of external conditions would from their acting on the reproductive system, probably cause the organization of those beings which were most affected to become, as under domestication, plastic. Now, can it be doubted, from the struggle each individual has to obtain subsistence, that any minute variation in structure, habits, or instincts, adapting that individual better to the new conditions, would tell upon its vigour and health? In the struggle it would have a better chance of surviving; and those of its offspring which inherited the variation, be it ever so slight, would also have a better chance. Yearly more are bred than can survive; the smallest grain in the balance, in the long run, must tell on which death shall fall, and which shall survive. Let this work of selection on the one hand, and death on the other, go on for a thousand generations, who will pretend to affirm that it would produce no effect, when we remember what, in a few years, Bakewell effected in cattle, and Western in sheep, by this identical principle of selection?

To give an imaginary example from changes in progress on an island:—let the organization of a canine animal which preyed chiefly on rabbits, but sometimes on hares, become slightly plastic; let these same changes cause the number of rabbits very slowly to decrease, and the number of hares to increase; the effect of this would be that the fox or dog would be driven to try to catch more hares: his organization, however, being slightly plastic, those individuals with the lightest forms, longest limbs, and best eyesight, let the differences be ever so small, would be slightly favoured, and would tend to live longer, and to survive during that time of the year when food was scarcest; they would also rear more young, which would tend to inherit these slight peculiarities. The less fleet ones would be rigidly destroyed. I can see no more reason to doubt that these causes in a thousand generations would produce a marked effect, and adapt the form of the fox or dog to the catching of hares instead of rabbits, than that greyhounds can be improved by selection and careful breeding. So would it be with plants under similar circumstances. If the number of individuals of a species with plumed seeds could be increased by greater powers of dissemination within its own area (that is if the check to increase fell chiefly on the seeds), those seeds which were provided with ever so little more down, would in the long run be most disseminated; hence a greater number of seeds thus formed would germinate, and would tend to produce plants inheriting the slightly better-adapted down*.

Besides this natural means of selection, by which those individuals are preserved, whether in their egg, or larval, or mature state, which are best adapted to the place they fill in nature, there is a second agency at work in most unisexual animals, tending to produce the same effect, namely, the struggle of the males for the females. These struggles are generally decided by the law of battle, but in the case of birds, apparently, by the charms of their song, by their beauty or their power of courtship, as in the dancing rock-thrush of Guiana. The most vigorous and healthy males, implying perfect adaptation, must generally gain the victory in their contests. This kind of selection, however, is less rigorous than the other; it does not require the death of the less successful, but gives to them fewer descendants. The struggle falls, moreover, at a time of year when food is generally abundant, and perhaps the effect chiefly produced would be the modification of the secondary sexual characters, which are not related to the power of obtaining food, or to defence from enemies, but to fighting with or rivalling other males. The result of this struggle amongst the males may be compared in some respects to that produced by those agriculturists who pay less attention to the careful selection of all their young animals, and more to the occasional use of a choice mate.

*I can see no more difficulty in this, than in the planter improving his varieties of the cotton plant.-C.D. 1858.

II. Abstract of a Letter from C. Darwin, Esq., to Prof. Asa Gray, Boston, U.S., dated Down, September 5th , 1857.

1. It is wonderful what the principle of selection by man, that is the picking out of individuals with any desired quality, and breeding from them, and again picking out, can do. Even breeders have been astounded at their own results. They can act on differences inappreciable to an uneducated eye. Selection has been methodically followed in Europe for only the last half century; but it was occasionally, and even in some degree methodically, followed in the most ancient times. There must have been also a kind of unconscious selection from a remote period, namely in the preservation of the individual animals (without any thought of their offspring) most useful to each race of man in his particular circumstances. This "roguing," as nurserymen call the destroying of varieties which depart from their type, is a kind of selection. I am convinced that intentional and occasional selection has been the main agent in the production of our domestic races; but however this may be, its great power of modification has been indisputably shown in later times. Selection acts only by the accumulation of slight or greater variations, caused by external conditions, or by the mere fact that in generation the child is not absolutely similar to its parent. Man, by this power of accumulating variations, adapts living beings to his wants-may be said to make the wool of one sheep good for carpets, of another for cloth, &c. 2. Now suppose there were a being who did not judge by mere external appearances, but who could study the whole internal organization, who was never capricious, and should go on selecting for one object during millions of generations; who will say what he might not effect? In nature we have some slight variation occasionally in all parts; and I think it can be shown that changed conditions of existence is the main cause of the child not exactly resembling its parents; and in nature geology shows us what changes have taken place, and are taking place. We have almost unlimited time; no one but a practical geologist can fully appreciate this. Think of the Glacial period, during the whole of which the same species at least of shells have existed; there must have been during this period millions on millions of generations.

3. I think it can be shown that there is such an unerring power at work in Natural Selection (the title of my book), which selects exclusively for the good of each organic being. The elder De Candolle, W. Herbert, and Lyell have written excellently on the struggle for life; but even they have not written strongly enough. Reflect that every being (even the elephant) breeds at such a rate, that in a few years, or at most a few centuries, the surface of the earth would not hold the progeny of one pair. I have found it hard constantly to bear in mind that the increase of every single species is checked during some part of its life, or during some shortly recurrent generation. Only a few of those annually born can live to propagate their kind. What a trifling difference must often determine which shall survive, and which perish!

4. Now take the case of a country undergoing some change. This will tend to cause some of its inhabitants to vary slightly-not but that I believe most beings vary at all times enough for selection to act on them. Some of its inhabitants will be exterminated; and the remainder will be exposed to the mutual action of a different set of inhabitants, which I believe to be far more important to the life of each being than mere climate. Considering the infinitely various methods which living beings follow to obtain food by struggling with other organisms, to escape danger at various times of life, to have their eggs or seeds disseminated, &c. &c., I cannot doubt that during millions of generations individuals of a species will be occasionally born with some slight variation, profitable to some part of their economy. Such individuals will have a better chance of surviving, and of propagating their new and slightly different structures; and the modification may be slowly increased by the accumulative action of natural selection to any profitable extent. The variety thus formed will either coexist with, or, more commonly, will exterminate its parent form. An organic being, like the woodpecker or misseltoe, may thus come to be adapted to a score of contingences-natural selection accumulating those slight variations in all parts of its structure, which are in any way useful to it during any part of its life.

5. Multiform difficulties will occur to every one, with respect to this theory. Many can, I think, be satisfactorily answered. Natura non facit saltum answers some of the most obvious. The slowness of the changes, and only a very few individuals undergoing change at any one time, answers others. The extreme imperfection of our geological record answers others.

6. Another principle, which may be called the principle of divergence, plays, I believe, an important part in the origin of species. The same spot will support more lie if occupied by very diverse forms. We see this in the many generic forms in a square yard of turf, and in the plants or insects on any little uniform islet, belonging almost invariably to as many genera and families as species. We can understand the meaning of this fact amongst the higher animals, whose habits we understand. We know that it has been experimentally shown that a plot of land will yield a greater weight if sown with several species and genera of grasses, than if sown with only two or three species. Now, every organic being, by propagating so rapidly, may be said to be striving its utmost to increase in numbers. So it will be with the offspring of any species after it has become diversified into varieties, or subspecies, or true species. And it follows, I think, from the foregoing facts, that the varying offspring of each species will try (only few will succeed) to seize on as many and as diverse places in the economy of nature as possible. Each new variety or species, when formed, will generally take the place of, and thus exterminate its less well-fitted parent. This I believe to be the origin of the classification and affinities of organic beings at all times; for organic beings always seem to branch and sub-branch like the limbs of a tree from a common trunk, the flourishing and diverging twigs destroying the less vigorous-the dead and lost branches rudely representing extinct genera and families.

This sketch is most imperfect; but in so short a space I cannot make it better. Your imagination must fill up very wide blanks.

C. Darwin.

III. On the Tendency of Varieties to depart indefinitely from the Original Type. By Alfred Russel Wallace.

One of the strongest arguments which have been adduced to prove the original and permanent distinctness of species is, that varieties produced in a state of domesticity are more or less unstable, and often have a tendency, if left to themselves, to return to the normal form of the parent species; and this instability is considered to be a distinctive peculiarity of all varieties, even of those occurring among wild animals in a state of nature, and to constitute a provision for preserving unchanged the originally created distinct species.

In the absence or scarcity of facts and observations as to varieties occurring among wild animals, this argument has had great weight with naturalists, and has led to a very general and somewhat prejudiced belief in the stability of species. Equally general, however, is the belief in what are called "permanent or true varieties,"—races of animals which continually propagate their like, but which differ so slightly (although constantly) from some other race, that the one is considered to be a variety of the other. Which is the variety and which the original species, there is generally no means of determining, except in those rare cases in which one race has been known to produce an offspring unlike itself and resembling the other. This, however, would seem quite incompatible with the "permanent invariability of species," but the difficulty is overcome by assuming that such varieties have strict limits, and can never again vary further from the original type, although they may return to it, which, from the analogy of the domesticated animals, is considered to be highly probable, if not certainly proved.

It will be observed that this argument rests entirely on the assumption, that varieties occurring in a state of nature are in all respects analogous to or even identical with those of domestic animals, and are governed by the same laws as regards their permanence of further variation. But this is the object of the present paper to show that this assumption is altogether false, that there is a general principle in nature which will cause many varieties to survive the parent species, and to give rise to successive variations departing further and further from the original type, and which also produces, in domesticated animals, the tendency of varieties to return to the parent form.

The life of wild animals is a struggle for existence. The full exertion of all their faculties and all their energies is required to preserve their own existence and provide for that of their infant offspring. The possibility of procuring food during the least favourable seasons, and of escaping the attacks of their most dangerous enemies, are the primary conditions which determine the existence both of individuals and of entire species. These conditions will also determine the population of a species; and by a careful consideration of all the circumstances we may be enabled to comprehend, and in some degree to explain, what at first sight appears so inexplicable—the excessive abundance of some species, while others closely allied to them are very rare.

The general proportion that must obtain between certain groups of animals is readily seen. Large animals cannot be so abundant as small ones; the carnivora must be less numerous than the herbivora; eagles and lions can never be so plentiful as pigeons and antelopes; the wild asses of the Tartarian deserts cannot equal in numbers the horses of the more luxuriant prairies and pampas of America. The greater or less fecundity of an animal is often considered to be one of the chief causes of its abundance or scarcity; but a consideration of these facts will show us that it really has little or nothing to do with the matter. Even the least prolific of animals would increase rapidly if unchecked, whereas it is evident that the animal population of the globe must be stationary, or perhaps, through the influence of man, decreasing. Fluctuations there may be; but permanent increase, except in restricted localities, is almost impossible. For example, our own observation must convince us that birds do not go on increasing every year in a geometrical ratio, as they would do, were there not some powerful check to their natural increase. Very few birds produce less than two young ones each year, while many have six, eight, or ten; four will certainly be below the average; and if we suppose that each pair produce young only four times in their life, that will also be below the average, supposing them not to die either by violence or want of food. Yet at this rate how tremendous would be the increase in a few years from a single pair! A simple calculation will show that in fifteen years each pair of birds would have increased to nearly ten millions! whereas we have no reason to believe that the number of birds of any country increases at all in fifteen or in one hundred and fifty years. With such powers of increase the population must have reached its limits, and have become stationary, in a very few years after the origin of each species. It is evident, therefore, that each year an immense number of birds must perish—as many in fact as are born; and as in the lowest calculation the progeny are each year twice as numerous as their parents, it follows that, whatever be the average number of individuals existing in any given country, twice that number must perish annually,—a striking result, but one which seems at least highly probable, and is perhaps under rather than over the truth. It would therefore appear that, as far as the continuance of the species and the keeping up the average number of individuals are concerned, large broods are superfluous. On the average all above one become food for hawks and kites, wild cats and weasels, or perish of cold and hunger as winter comes on. This is strikingly proved by the case of particular species; for we find that their abundance in individuals bears no relation whatever to their fertility in producing offspring. Perhaps the most remarkable instance of an immense bird population is that of the passenger pigeon of the United States, which lays only one, or at most two eggs, and is said to rear generally but one young one. Why is this bird so extraordinarily abundant, while others producing two or three times as many young are much less plentiful? The explanation is not difficult. The food most congenial to this species, and on which it thrives best, is abundantly distributed over a very extensive region, offering such differences of soil and climate, that in one part or another of the area the supply the supply never fails. The bird is capable of a very rapid and long-continued flight, so that it can pass without fatigue over the whole of the district it inhabits, and as soon as the supply of food begins to fail in one place is able to discover a fresh feeding-ground. This example strikingly shows us that the procuring a constant supply of wholesome food is almost the sole condition requisite for ensuring the rapid increase of a given species, since neither the limited fecundity, nor the unrestricted attacks of birds of prey and of man are here sufficient to check it. In no other birds are these peculiar circumstances so strikingly combined. Either their food is more liable to failure, or they have not sufficient power of wing to search for it over an extensive area, or during some season of the year it becomes very scarce, and less wholesome substitutes have to be found; and thus, though more fertile in offspring, they can never increase beyond the supply of food in the least favourable seasons. Many birds can only exist by migrating, when their food becomes scarce, to regions possessing a milder, or at least a different climate, though, as these migrating birds are seldom excessively abundant, it is evident that the countries they visit are still deficient in a constant and abundant supply of wholesome food. Those whose organization does not permit them to migrate when their food becomes periodically scarce, can never attain a large population. This is probably the reason why woodpeckers are scarce with us, while in the tropics they are among the most abundant of solitary birds. Thus the house sparrow is more abundant than the redbreast, because its food is more constant and plentiful,—seeds of grasses being preserved during the winter, and our farm-yards and stubble-fields furnishing an almost inexhaustible supply. Why, as a general rule, are aquatic, and especially sea birds, very numerous in individuals? Not because they are more prolific than the others, generally the contrary; but because their food never fails, the sea-shores and river-banks daily swarming with a fresh supply of small mollusca and crustacea. Exactly the same law applies to mammals. Wild cats are prolific and have few enemies; why then are they never as abundant as rabbits? The only intelligible answer is, that their supply of food is more precarious. It appears evident, therefore, that so long as a country remains physically unchanged, the numbers of its animal population cannot materially increase. If one species does so, some others requiring the same kind of food must diminish in proportion. The numbers that die annually must be immense; and as the individual existence of each animal depends upon itself, those that must die must be the weakest—the very young, the aged, and the diseased,—while those that prolong their existence can only be the most perfect in health and vigour—those who are best able to obtain food regularly, and avoid their numerous enemies. It is, as we commenced by remarking, "a struggle for existence," in which the weakest and least perfectly organized must always succumb.

Now it is clear that what takes place among the individuals of a species must also occur among the several allied species of a group,—viz. that those which are best adapted to obtain a regular supply of food, and to defend themselves against the attacks of their enemies and the vicissitudes of the seasons must necessarily obtain and preserve a superiority in population; while those species which from some defect of power or organization are the least capable of counteracting the vicissitudes of food supply, &c., must diminish in numbers, and, in extreme cases, become altogether extinct. Between these extremes the species will present various degrees of capacity for ensuring the means of preserving life; and it is thus we account for the abundance or rarity of species. Our ignorance will generally prevent us from accurately tracing the effects to their causes; but could we become perfectly acquainted with the organization and habits of the various species of animals, and could we measure the capacity of each for performing the different acts necessary to its safety and existence under all the varying circumstances by which it is surrounded, we might be able even to calculate the proportionate abundance of individuals which is the necessary result.

If now we have succeeded in establishing these two points—1st , that the animal population of a country is generally stationary, being kept down by a periodical deficiency of food, and other checks; and, 2nd , that the comparative abundance or scarcity of the individuals of the several species is entirely due to their organization and resulting habits, which, rendering it more difficult to procure a regular supply of food and to provide for their personal safety in some cases than in others, can only be balanced by a difference in the population which have to exist in a given area—we shall be in a condition to proceed to the consideration of varieties, to which the preceding remarks have a direct and very important application.

Most or perhaps all the variations from the typical form of a species must have some definable effect, however slight, on the habits or capacities of the individuals. Even a change of colour might, by rendering them more or less distinguishable, affect their safety; a greater or less development of hair might modify their habits. More important changes, such as an increase in the power or dimensions of the limbs or any of the external organs, would more or less affect their mode of procuring food or the range of country which they inhabit. It is also evident that most changes would affect, either favourably or adversely, the powers of prolonging existence. An antelope with shorter or weaker legs must necessarily suffer more from the attacks of the feline carnivora; the passenger pigeon with less powerful wings would sooner or later be affected in its powers of procuring a regular supply of food; and in both cases the result must necessarily be a diminution of the population of the modified species. If, on the other hand, any species should produce a variety having slightly increased powers of preserving existence, that variety must inevitably in time acquire a superiority in numbers. These results must follow as surely as old age, intemperance, or scarcity of food produces an increased mortality. In both cases there may be many individual exceptions; but on the average the rule will invariably be found to hold good. All varieties will therefore fall into two classes—those which under the same conditions would never reach the population of the parent species, and those which would in time obtain and keep a numerical superiority. Now let some alteration of physical conditions occur in the district—a long period of drought, a destruction of vegetation by locusts, the irruption of some new carnivorous animal seeking "pastures new"—any change in fact tending to render existence more difficult to the species in question, and taking its utmost powers to avoid complete extermination; it is evident that, of all the individuals composing the species, those forming the least numerous and most feebly organized variety would suffer first, and, were the pressure severe, must soon become extinct. The same causes continuing in action, the parent species would next suffer, would gradually diminish in numbers, and with a recurrence of similar unfavourable conditions might also become extinct. The superior variety would then alone remain, and on a return to favourable circumstances would rapidly increase in numbers and occupy the place of the extinct species and variety.

The variety would now have replaced the species, of which it would be a more perfectly developed and more highly organized form. It would be in all respects better adapted to secure its safety, ad to prolong its individual existence and that of the race. Such a variety could not return to the original form; for that form is an inferior one, and could never compete with it for existence. Granted, therefore, a "tendency" to reproduce the original type of species, still the variety must ever remain preponderant in numbers, and under adverse physical conditions again alone survive. But this new, improved, and populous race might itself, in course of time, give rise to new varieties, exhibiting several diverging modifications of form, any of which, tending to increase the facilities for preserving existence, must, by the same general law, in their turn become predominant. Here, then, we have progression and continued divergence deduced from the general laws which regulate the existence of animals in a state of nature, and from the undisputed fact that varieties do frequently occur. It is not, however, contended that this result would be invariable; a change of physical conditions in the district might at times materially modify it, rendering the race which had been the most capable of supporting existence under the former conditions now the least so, and even causing the extinction of the newer and, for a time, superior race, while the old or parent species and its first inferior varieties continued to flourish. Variations in unimportant parts might also occur, having no perceptible effect of the life-preserving powers; and the varieties so furnished might run a course parallel with the parent species, either giving rise to further variations or returning to the former type. All we argue for is, that certain varieties have a tendency to maintain their existence longer than the original species, and this tendency must make itself felt; for though the doctrine of chances or averages can never be trusted to on a limited scale, yet, if applied to high numbers, the results come nearer to what theory demands, and, as we approach to an infinity of examples, becomes strictly accurate. Now the scale on which nature works is so vast—the numbers of individuals and periods of time with which she deals approach so near to infinity, that any cause, however slight, and however liable to be veiled and counteracted by accidental circumstances, must in the end produce its full legitimate results.

Let us now turn to domesticated animals, and inquire how varieties produced among them are affected by the principles here enunciated. The essential difference in the condition of wild and domestic animals is this—that among the former, their well-being and very existence depend upon the full exercise and healthy condition of all their senses and physical powers, whereas, among the latter, these are only partially exercised, and in some cases are absolutely unused. A wild animal has to search, and often to labour, for every mouthful of food—to exercise sight, hearing, and smell in seeking it, and in avoiding dangers, in procuring shelter from the inclemency of the seasons, and in providing for the subsistence and safety of its offspring. There is no muscle of its body that is not called into daily and hourly activity; there is no sense or faculty that is not strengthened by continual exercise. The domestic animal, on the other hand, has food provided for it, is sheltered, and often confined, to guard against the vicissitudes of the seasons, is carefully secured from the attacks of its natural enemies, and seldom even rears its young without human assistance. Half of its senses and faculties are quite useless; and the other half are but occasionally called into feeble exercise, while even its muscular system is only irregularly called into action.

Now when a variety of such an animal occurs, having increased power or capacity in any organ or sense, such increase is totally useless, is never called into action, and may even exist without the animal ever becoming aware of it. In the wild animal, on the contrary, all its faculties and powers being brought into full action for the necessities of existence, any increase becomes immediately available, is strengthened by exercise, and must even slightly modify the food, the habits, and the whole economy of the race. It creates as it were a new animal, one of superior powers, and which will necessarily increase in numbers and outlive those inferior to it.

Again, in the domesticated animal all variations have an equal chance of continuance; and those which would decidedly render a wild animal unable to compete with its fellows and continue its existence are no disadvantaged whatever in a state of domesticity. Our quickly fattening pigs, short-legged sheep, pouter pigeons, and poodle dogs could never have come into existence in a state of nature, because the very first step towards such inferior forms would have led to rapid extinction of the race; still less could they now exist in competition with their wild allies. The great speed but slight endurance of the race horse, the unwieldy strength of the ploughman’s team, would both be useless in a state of nature. If turned wild on the pampas, such animals would probably soon become extinct, or under favourable circumstances might each lose those extreme qualities which would never be called into action, and in a few generations would revert to a common type, which must be that in which the various powers and faculties are so proportioned to each other as to be best adapted to procure food and secure safety,—that in which by the full exercise of every part of his organization the animal can alone continue to live. Domestic varieties, when turned wild, must return to something near the type of the original wild stock, or become altogether extinct.

We see, then, that no inferences as to varieties in a state of nature can be deduced from the observation of those occurring among domestic animals. The two are so much opposed to each other in every circumstance of their existence, that what applies to the one is almost sure not to apply to the other. Domestic animals are abnormal, irregular, artificial; they are subject to varieties which never occur and never can occur in a state of nature; their very existence depends altogether on human care; so far are many of them removed from that just proportion of faculties, that true balance of organization, by means of which alone an animal left to its own resources can preserve its existence and continue its race.

The hypothesis of Lamarck—that progressive changes in species have been produced by the attempts of animals to increase the development of their own organs, and thus modify their structure and habits—has been repeatedly and easily refuted by all writers on the subject of varieties and species, and it seems to have been considered that when this was done the whole question has been finally settled; but the view here developed renders such an hypothesis quite unneccessary, by showing that similar results must be produced by the action of principles constantly at work in nature. The powerful retractile talons of the falcon- and the cat-tribes have not been produced or increased by the volition of those animals; but among different varieties which occurred in the earlier and less highly organized forms of these groups, those always survived longest which had the greatest facilities for seizing their prey. Neither did the giraffe acquire its long neck by desiring to reach the foliage of the more lofty shrubs, and constantly stretching its neck for the purpose, but because any varieties which occurred among its antitypes with a longer neck than usual at once secured a fresh range of pasture over the same ground as their shorter-necked companions, and on the first scarcity of food were thereby enabled to outlive them. Even the peculiar colours of many animals, especially insects, so closely resembling the soil or the leaves or the trunks o which they habitually reside, are explained on the same principle; for though in the course of ages varieties of many tints may have occurred, yet those races having colours best adapted to concealment from their enemies would inevitably survive the longest. We have also here an acting cause to account for that balance so often observed in nature,—a deficiency in one set of organs always being compensated by an increased development of some others—powerful wings accompanying weak feet, or great velocity making up for the absence of defensive weapons; for it has been shown that all varieties in which an unbalanced deficiency occurred could not long continue their existence. The action of this principle is exactly like that of the centrifugal governor of the steam engine, which checks and corrects any irregularities almost before they become evident; and in like manner no unbalanced deficiency in the animal kingdom can ever reach any conspicuous magnitude, because it would make itself felt at the very first step, by rendering existence difficult and extinction almost sure soon to follow. An origin such as is here advocated will also agree with the peculiar character of the modifications of form and structure which obtain in organized beings—the many lines of divergence from a central type, the increasing efficiency and power of a particular organ through a succession of allied species, and the remarkable persistence of unimportant parts such as colour, texture of plumage and hair, form of horns or crests, through a series of species differing considerably in more essential characters. It also furnishes us with a reason for that "more specialized structure" which Professor Owen states to be a characteristic of recent compared with extinct forms, and which would evidently be the result of the progressive modification of any organ applied to a special purpose in the animal economy.

We believe we have now shown that there is a tendency in nature to the continued progression of certain classes of varieties further and further from the original type—a progression to which there appears no reason to assign any definite limits—and that the same principle which produces this result is a state of nature will also explain why domestic varieties have a tendency to revert to the original type. This progression, by minute steps, in various directions, but always checked and balanced by the necessary conditions, subject to which alone existence can be preserved, may, it is believed, be followed out so as to agree with all the phenomena presented by organized beings, their extinction and succession in past ages, and all the extraordinary modifications of form, instinct, and habits which they exhibit.

Ternate, February, 1858.

Source :

— DARWIN Charles & WALLACE Alfred Russel, «On the Tendancy of Species to Form Varieties, and on the Perpetuation of Varieties by Natural Means of Selection», Journ. Proc. Linn. Soc. Lond. (Zool.), vol. III, n°9, 1858, pp. 45-62 ;

— The Linnean Society of London ;

This section's articles
  1. ANONYME : Protestation devant les libertaires du présent et du futur sur les capitulations de 1937
  2. APPEL Jan (1966) : Autobiographie
  3. APPEL Jan (1966) : Autobiography [english version]
  4. BENBOW William (1832) : Grand National Holiday, and Congress of the Productive Classes
  5. BORDIGA Amadeo (1922) : Le principe démocratique
  6. BORDIGA Amadeo (1922) : Thèses de Rome
  7. BORDIGA Amadeo (1951) : Crue et rupture de la civilisation bourgeoise
  8. BORDIGA Amadeo (1951) : Filling and bursting of bourgeois civilisation

  9. BORDIGA Amadeo (1951) : Piena e rotta della civiltà borghese
  10. BOUKHARINE Nicolas (1917) : La guerre et le socialisme révolutionnaire
  11. BOUKHARINE Nicolas (1937) : À la future génération des dirigeants du Parti
  12. BRENDEL Cajo (1953) : L’insurrection ouvrière en Allemagne de l’Est - juin 1953
  13. BRENDEL Cajo (1999) : « Garde-toi de tout mythe ! »
  14. BRETON André & COLLECTIF (1934) : Planète sans visa
  15. BRETON André (1936) : La vérité sur le procès de Moscou
  16. BRETON André (1956) : Hongrie, Soleil levant
  17. CAMUS Albert (1953) : Moscou sous Lénine
  18. CHIRIK Marc (1976) : Présentation de textes de « Bilan »
  19. COLLECTIF (1973) : Garde-fous arrêtez de vous serrer les coudes — Documents
  20. CONTRE-ATTAQUE (1935) : Union de lutte des intellectuels révolutionnaires
  21. DARWIN Charles & WALLACE Alfred (1858) : On the Tendency of Species to form Varieties ; and on the Perpetuation of Varieties and Species by Natural Means of Selection
  22. EISNER Kurt (1918) : An die Bevölkerung Münchens !
  23. ENGELS Friedrich (1842) : Die innern Krisen
  24. ENGELS Friedrich (1842) : Englische Ansicht über die innern Krisen
  25. ENGELS Friedrich (1842) : Stellung der politischen Parteien
  26. FISR (1943) : À tous les travailleurs de la pensée et des bras
  27. GAPONE George & VASSIMOV Ivan (1905) : Pétition des ouvriers au Tsar
  28. GLAT (1969) : Luttes et organisations de classe
  29. GLAT (1969) : Pour un regroupement révolutionnaire
  30. GRANDJONC Jacques (1989) : Introduction à « Communisme / Kommunismus / Communism »
  31. GTM (1937) : Le massacre de Barcelone, une leçon pour les ouvriers du Mexique !
  32. GUILLAMON Augustin (2002) : Chronologie d’Amadeo Bordiga
  33. HAASE Hugo (1919) : Reichstagsreden gegen die deutsche Kriegspolitik
  34. HOBSBAWM Eric (1961) : « La situation de la classe laborieuse en Angleterre »
  35. HOWARD Roy (1936) : Interview with J. Stalin
  36. ISTRATI Panaït (1929) : Conclusion pour combattants
  37. JANOVER Louis (1977) : Les nouveaux convertis
  38. JANOVER Louis (1981) : Actualité de Panaït Istrati
  39. JANOVER Louis (1985) : Lire Spartacus
  40. JANOVER Louis (1989) : Daniel Guérin, le trouble-fête
  41. JANOVER Louis (1991) : Les vraies leçons de Marx
  42. JANOVER Louis (1996) : Maximilien Rubel, une œuvre à découvrir
  43. JANOVER Louis (2007) : Les habits neufs de la feinte-dissidence
  44. JANOVER Louis (2008) : À propos de la réédition des « Pages choisies » de Karl Marx
  45. JANOVER Louis (2009) : De la rétrocritique considérée comme le dernier des arts
  46. JANOVER Louis (2009) : Vous avez dit minuit dans le siècle ?
  47. JAURÈS Jean (1914) : Discours de Vaise
  48. JOUHAUX Léon (1914) : Discours sur la tombe de Jean Jaurès
  49. KAUTSKY Karl (1922) : Socialisation ou nationalisation des banques ?
  50. LAFARGUE Paul (1885) : Une visite à Louise Michel
  51. LÉNINE & SVERDLOV Iakov (1918) : Position du Comité Central du P.O.S.D.R.(b) dans la question de la paix séparée et annexionniste
  52. LÉNINE (1914) : Der Krieg und die russische Sozialdemokratie
  53. LÉNINE (1918) : Additif au décret du Conseil des Commissaires du Peuple « La Patrie socialiste est en danger ! »
  54. LÉNINE (1918) : Chose étrange et monstrueuse
  55. LÉNINE (1918) : De la gale
  56. LÉNINE (1918) : Discours à la réunion commune des fractions bolchevique et socialiste-révolutionnaire de gauche du Comité Exécutif Central de Russie du 23 février 1918
  57. LÉNINE (1918) : Interventions sur la question de la paix de Brest-Litovsk
  58. LÉNINE (1918) : Leçon sérieuse et sérieuse responsabilité
  59. LÉNINE (1918) : Note sur la nécessité de signer la paix
  60. LÉNINE (1918) : Paix ou guerre ?
  61. LÉNINE (1918) : Projet d’ordre du jour à tous les soviets de députés
  62. LÉNINE (1918) : Projet de résolution du Conseil des commissaires du peuple sur l’évacuation du gouvernement
  63. LÉNINE (1918) : Rapport sur la question de la paix
  64. LÉNINE (1918) : Sur le terrain pratique
  65. LÉNINE (1918) : Une leçon dure, mais nécessaire
  66. LÉNINE (1918) : Une paix malheureuse
  67. LÉNINE (1919) : Discours d’ouverture au Premier Congrès de l’Internationale Communiste
  68. LÉNINE (1919) : Discours prononcé le 19 janvier après l’assassinat de Rosa Luxemburg et de Karl Liebknecht
  69. LERMONTOV Michel (1840) : Un fataliste
  70. LEVI Paul (1924) : Einleitung zu Rosa Luxemburg: «Einführung in die Nationalökonomie»
  71. LIEBKNECHT Karl & MEYER Ernst (1918) : Die nächsten Ziele eures Kampfes
  72. LIEBKNECHT Karl (1914) : Déclaration au Reichstag
  73. LIEBKNECHT Karl (1915) : Lettre à la Conférence de Zimmerwald
  74. LIEBKNECHT Karl (1918) : Für die freie sozialistische Republik Deutschland
  75. LIEBKNECHT Karl (1918) : To the Workers and Soldiers of the Allied Countries
  76. LIEBKNECHT Karl (1918) : Trotz alledem !
  77. LIEBKNECHT Karl (1918) : Was will der Spartakusbund ?
  78. LIEBKNECHT Karl (1919) : Kamaraden ! Arbeiter !
  79. LIEBKNECHT Karl (1919) : Malgré tout !
  80. LIEBKNECHT Karl, USPD & SPD (1918) : Bedingungen zum Eintritt in die Regierung
  81. LUXEMBURG Rosa & SPARTAKUSBUND (1918) : Was will der Spartakusbund ?
  82. LUXEMBURG Rosa (1893) : L’année 1793 !
  83. LUXEMBURG Rosa (1898) : À quoi sert la politique coloniale ?
  84. LUXEMBURG Rosa (1902) : Martinique
  85. LUXEMBURG Rosa (1904) : Social-démocratie et parlementarisme
  86. LUXEMBURG Rosa (1906) : Blanquisme et social-démocratie
  87. LUXEMBURG Rosa (1908) : Tolstoï, comme penseur social
  88. LUXEMBURG Rosa (1912) : Dans l’asile de nuit
  89. LUXEMBURG Rosa (1912) : Im Asyl
  90. LUXEMBURG Rosa (1914) : Discours devant le Tribunal de Francfort
  91. LUXEMBURG Rosa (1914) : Le revers de la médaille
  92. LUXEMBURG Rosa (1918) : Assemblée nationale ou gouvernement des Conseils ?
  93. LUXEMBURG Rosa (1918) : Das alte Spiel
  94. LUXEMBURG Rosa (1918) : Der Anfang
  95. LUXEMBURG Rosa (1918) : Die kleinen Lafayette
  96. LUXEMBURG Rosa (1918) : Die Nationalversammlung
  97. LUXEMBURG Rosa (1918) : Eine Ehrenpflicht
  98. LUXEMBURG Rosa (1918) : L’Achéron s’est mis en mouvement
  99. LUXEMBURG Rosa (1918) : L’Assemblée nationale
  100. LUXEMBURG Rosa (1918) : Les petits Lafayette
  101. LUXEMBURG Rosa (1918) : Nationalversammlung oder Räteregierung ?
  102. LUXEMBURG Rosa (1918) : Parteitag der Unabhängigen SP
  103. LUXEMBURG Rosa (1918) : Protestresolution gegen das Vorgehen der deutschen Regierung im Osten
  104. LUXEMBURG Rosa (1918) : Schlussrede
  105. LUXEMBURG Rosa (1918) : Un devoir d’honneur
  106. LUXEMBURG Rosa (1918) : Unser Programm und die politische Situation
  107. LUXEMBURG Rosa (1918) : Korreferat zur Politik der USPD
  108. LUXEMBURG Rosa (1918) : Les masses « immatures »
  109. LUXEMBURG Rosa (1919) : Der erste Parteitag
  110. LUXEMBURG Rosa (1919) : Das Versagen der Führer
  111. LUXEMBURG Rosa (1919) : Die Ordnung herrscht in Berlin
  112. LUXEMBURG Rosa (1919) : Kartenhäuser
  113. LUXEMBURG Rosa (1919) : L’ordre règne à Berlin
  114. LUXEMBURG Rosa (1919) : Versäumte Pflichten
  115. LUXEMBURG Rosa (1919) : Was machen die Führer ?
  116. LÖWY Michael (1969) : Le marxisme révolutionnaire de Rosa Luxemburg
  117. MALATESTA Errico & COLLECTIF (1915) : L’Internationale anarchiste et la guerre
  118. MARAT Jean-Paul (1791) : Sur la loi Le Chapelier
  119. MARTOV Julius (1907) : La leçon des événements russes
  120. MARTOV Julius (1908) : Le Marxisme en Russie
  121. MARTOV Julius (1918) : À bas la peine de mort !
  122. MARTOV Julius : La Troisième Douma et les socialistes
  123. MARX Karl & ENGELS Friedrich (1848) : Le Manifeste du Parti Communiste
  124. MARX Karl (1852) : Pauperism and Free Trade. - The approaching commercial crisis
  125. MARX Karl (1856) : Appel au prolétariat anglais
  126. MARX Karl (1865) : Salaire, Prix et Plus-value
  127. MATTICK Paul (1960) : Anton Pannekoek, une biographie politique
  128. MATTICK Paul (1977) : Interview à Lotta Continua
  129. MEHRING Franz (1914) : Ein Protest
  130. MÜHSAM Erich (1918) : Revolutionäre, internationalistisch gesinnte kommunistische Arbeiter und Soldaten !
  131. O’CASEY Sean : The Story of the Irish Citizen Army
  132. PANNEKOEK Anton (1933) : L’acte personnel
  133. PANNEKOEK Anton (1933) : La destruction comme moyen de lutte
  134. PÉRET Benjamin (1945) : Le déshonneur des poètes
  135. PIATAKOV, BOSCH, BOUKHARINE (1915) : Thèses sur le droit des nations à l’autodétermination
  136. PIECK Wilhelm ( 1918) : Arbeiter, Soldaten, Genossen !
  137. POSPOLOV Pavel (1938) : Aperçu historique - La lutte de Boukharine contre Lénine et le Parti
  138. PROUVOST Léon (1921) : Le code bolchevik du mariage
  139. PYATAKOV, BOSCH, BUKHARIN (1915) : Theses on the right of nations to self-determination
  140. RADEK Karl (1919) : Nachruf auf Karl Liebknecht
  141. RUBEL Maximilien (1947) : Karl Marx et le socialisme populiste russe
  142. RUBEL Maximilien (1980) : Le socialisme réellement inexistant
  143. SCHEIDEMANN Philipp (1924) : Bericht über den 9. November 1918
  144. SCHMIDT Véra (1923) : Éducation psychanalytique en Russie soviétique
  145. SOREL Georges (1899) : L’éthique du socialisme
  146. SOREL Georges (1906) : Le caractère religieux du Socialisme
  147. SOVNARKOM (1918) : La patrie socialiste est en danger !
  148. SPD (1914) : Aufruf zum Massenprotest gegen die Kriegsgefahr
  149. SPD (1914) : Resolution der Berliner Arbeiterschaft gegen das Ultimatum Österreich-Ungarns an Serbien
  150. SPD Württembergs (1914) : Bericht über eine öffentliche Versammlung mit Karl Liebknecht
  151. TROELSTRA (1914) : Kautsky und der Zusammenbruch der II. Internationale
  152. TROTSKI Léon (1910) : Les intellectuels et le socialisme
  153. TROTSKI Léon (1916) : Salut à Franz Mehring et Rosa Luxemburg
  154. TROTSKI Léon (1919) : Karl Liebknecht, Rosa Luxemburg
  155. TROTSKI Léon (1929) : Paris et Zimmerwald
  156. TROTSKI Léon (1939) : Un nouveau grand écrivain, Jean Malaquais
  157. TROTSKI Léon et al. (1915) : Manifeste de Zimmerwald
  158. TROTZKI Leo et al. (1915) : Das Zimmerwalder Manifest
  159. VOLINE (1939) : La naissance des « Soviets » ( janvier - février 1905 )
  160. VOLINE (1939) : Souvenirs sur Gapone et Janvier 1905
  161. WEIL Simone (1933) : Déclaration à la conférence d’unification des groupes de la gauche communiste
  162. ZETKIN Clara (1914) : Resolution für den Kampf gegen den Krieg